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Rice diseases have caused great economic losses to farmers in rice cultivation. The current 
assessment of rice disease evaluation still relies on manual, subjective, and laborious 
techniques. The manual and subjective evaluations lead to uncertainties since some diseases 
have almost similar characterisation. The applications of immunological, molecular, and 
microscope techniques are time-consuming, costly, and skills dependent. Thus, optical 
techniques are recommended to facilitate the control of diseases through their feasibility, 
rapidity, and accuracy, which can lead to better management strategies, besides improving 
production activity. These techniques for detecting and monitoring the diseases are important 
for precaution and prevention action. The present review discusses the existing and potential 
optical techniques for the detection of rice diseases. The techniques include optical imaging 
that consists of computer vision, spectroscopy, multispectral imaging, hyperspectral imaging 
(HSI), and remote sensing. Thus, this work presents in-depth information related to the non-
destructive and potential applications of optical imaging techniques for rice disease detection. 
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1. Introduction 
 
 Rice is one of the most vital cereal plants and staple food in 
the world (Kurniawati et al., 2009). However, infection of 
diseases caused by pathogens, which include bacteria, fungi, and 
viruses, may cause great economic losses to farmers as rice plant 
is easily susceptible to diseases and infections (Yao et al., 2009). 
There are many types of rice diseases at present, but the most 
popular ones are rice blast and brown spot.  Rice plant diseases, 
such as bacterial leaf streak, blast, brown spot, leaf scald, narrow 
brown leaf spot, red stripe, sheath blight, and tungro, were 
classified by the Rice Knowledge Bank as the diseases that 
impose on the leaves (Surendrababu et al., 2014). Every rice 
plant disease has its own unique pattern, but some of them, such 
as blast, brown spot, tungro, leaf scald, and red stripe are very 
similar in which they mimic the pattern of natural ageing of 
leaves. For this reason, recognition of diseases at an early stage 
is vital for early prevention and precautions. 
 Recently, the detection of diseases by farmers mainly relies 
on their experiences, guidance from books, and help from the 
experts for identification. However, these manual methods are 
only suitable for detecting typical diseases.  In some cases, 
diseases share similar spots, but different spots can also reflect 
the same diseases due to different rice varieties (Ali et al., 2019). 
This complexity of identifying rice diseases can lead to incorrect 
measurement and use of wrong pesticides. Besides, the 
detection of growth of diseases in the plant at an early stage is 
important so that farmers can take necessary actions for 
preventing the diseases from spreading to the other parts of the 
field (Suman & Dhruvakumar, 2015). 
 Some methods of detection of rice diseases that have been 
used to date are immunological and molecular methods, such as 
polymerase chain reaction (PCR), enzyme-linked 
immunosorbent assay (ELISA), and microscopy (Sharma & 
Dasgupta, 2012). These methods are reliably accurate, but time 
consuming, costly, and need professional expertise. 
Consequently, they are impossible to be applied in real-time 
condition. In addition, technology like PCR has several 
limitations, which are complicated and provides uncertainty 

results, such as the uneven distribution of pathogens in host 
plants, presence of PCR inhibitors in the extracted DNA/RNA, 
and low pathogen concentration (Pereira et al., 2010). Since the 
diseases need to be identified quickly to reduce the impact of the 
pathogen attack and to control the diseases, optical imaging 
techniques, such as computer vision, spectroscopy, 
hyperspectral imaging (HSI), and remote sensing have displayed 
the great potential to be applied in rice industries. Hence, this 
paper provides information on the application of optical imaging 
techniques in the detection of rice diseases. The paper also 
discusses the fundamental theory that depicts the development 
of optical imaging techniques. 
 
2. Optical properties of plant tissues 
 
 The most investigated plant part for the optical properties 
of plant tissues is the leaf due to its important role in 
photosynthesis. Besides, the interaction of electromagnetic 
radiations on the plant leaves, which are transmission, 
absorption, and reflection, strongly depends on the physical and 
the chemical characteristics of leaves (Steiner et al., 2012). 
Optical properties of leaf tissue consist of absorption, scattering, 
transmission and reflection (Mahesh et al., 2015). Absorption is 
the process when the energy of a photon is taken up by matter 
while the transmission is the process of light passing through 
the matter. On the other hands, the reflectance is the process 
when incident illumination reacts with matter and returns from 
its surface which converted to radiant energy. As a result of leaf 
reflectance of sunlight, multiple interactions occurred on the 
leaf such as interaction with cell structure and pigments like 
chlorophyll (Kanda et al., 2007).  In contrast, light scattering is 
the process when the light in the form of propagating energy is 
scattered as the deflection of a ray from a straight path. During 
light propagation in the tissue, the light carries useful 
information on the cellular characteristics and structures 
(Hashim et al., 2013). As absorption of radiant energy is induced 
by water content and chemistry of the leaf, light scattering is 
induced by the leaf surface and internal cellular. 
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 The optical domains which range from 400nm to 2500nm 
are divided into three parts which are visible (400nm-800nm), 
near-infrared (800-1100nm) and short wave infrared (1100-
2500nm) (Valente et al., 2009). Visible range is characterized by 
strong absorption of light by photosynthesis pigments in the 
green leaf (Buschmann et al., 2012). In near-infrared range 
(800-1100nm), absorption is limited to dry matter but multiple 
scattering within the leaf due to a fraction of air spaces and 
internal structure drives the reflectance and transmittance 
levels.  Middle infrared range (1100-2500nm) has strong 
absorption influenced by water in a fresh leaf and dry matter 
when the leaf wilts. Level of light absorption is influenced by the 
amount of chlorophyll in the parenchyma and spongy 
mesophyll. Low reflectance in the visible range is due to 
absorption by photoactive plant pigments. Leaf pigments i.e. 
chlorophyll a and chlorophyll b absorbs blue light (400nm-
495nm) and red light (620nm-700nm) while carotenoids 
absorb only blue light (400nm-495nm) (Yang, 2010). These 
pigments transfer the absorbed energy into the photosynthetic 
electron chain. On the other hand, in the near-infrared range, 
leaf internal structure, leaf anatomy and epidermal surface 
characteristics influence the reflectance of light.  
 Multiple internal scattering processes within the leaf tissue 
and direct reflection on the leaf surface causing high reflection 
in the near-infrared region. Correspondingly, minor absorption 
in the near-infrared region is influenced by leaf biochemical 
compounds like cellulose, carbohydrates and lignin (Singh et al., 
2012). Moreover, multiple interactions those take place 
between incoming irradiation and biophysical, such as tissue 
structure and leaf surface, as well as biochemical characteristics, 
such as water and pigments, are the results of reflectance on the 
leaves. However, pathogens activities also may cause 
physiological changes in plant metabolism that result in the 
appearance of disease symptoms. Appearances due to 
modifications in pigments, tissues, and water content of plants 
can be related to the changes in optical properties. 
 

3. Optical imaging techniques for rice diseases detection 
 
3.1 Computer vision 
 
 Computer vision has been used for many applications in the 
agricultural sector. These applications include the detection of 
disease or insect-damage, the detection of nutrient deficiencies, 
the estimation of quality in agricultural products, as well as in 
the grading and sorting processes for fruits and vegetables 
(Brosnan & Sun, 2004; Chen et al., 2012; Hu et al., 2010; 
Narendra & Hareesh, 2010; Patel et al., 2012). In paddy, the 
system has been used to distinguish head rice from broken rice 

based on the rice shape, besides evaluating the quality of rice 
(Maheshwari, 2013; Renugambal & Senthilraja, 2015). It is a 
cost-effective system, non-destructive, rapid, accurate, and 
automatic, which can be applied in the laboratory or at the field 
as an automated system (Mohd Ali et al., 2020). Moreover, 
computer vision system processes and analyses digital images 
in determining specific attributes, such as shape or colours that 
yield to object recognition via automatic processing of a digital 
image. Besides, the computer vision system electronically 
perceives and evaluates an image by emulating the function of 
human vision.  
 The basic components of the computer vision system 
mostly consist of an imaging sensor, the light source for 
illumination, computer or chip as a processing device for image 
processing algorithms, inspecting flat or holder to hold the plant 
sample, and a liquid-crystal display (LCD) screen for data 
output. The main components of the computer vision system are 
illustrated in Figure 1. The imaging sensors can range from low-
cost high-resolution digital cameras to expensive charged-
couple device (CCD) cameras (Casanova et al., 2014). However, 
it has been recommended to use a CCD camera as the imaging 
sensor as it produces high-quality images, which later could 
reduce image pre-processing works. Good illumination also 
helps to reduce noise in the image that simplifies the 
segmentation process. In addition, when designing an 
illumination system, some aspects, such as lamp type, location, 
and colour quality, must be considered. When surface feature 
extraction is needed, front lighting is recommended to be used, 
whereas when sub-surface feature analysis or critical edge 
dimensioning is needed, backlighting is recommended (Brosnan 
& Sun, 2004). Additionally, the selection of light sources is one 
of the important steps as it affects the quality and the image 
analysis performance. Light sources that can be used include 
incandescent, lasers, fluorescent, infrared lamps, and X-ray 
tubes. Thus, the computer vision system component may be 
added or modified based on the user function.  
 During the image acquisition process, the camera captures 
the image and sends the acquired data to the computer. The 
computer would keep the image, which will be further used for 
image analysis. Image acquisition is the process of obtaining the 
images. The acquisition of images is commonly done with a 
white or black background in order to avoid reflections while 
capturing the images. During the acquisition process, the angle 
of the camera, the intensity of light, the distance between 
camera and sample, as well as the sample position or point on 
the sample, should be consistent in order to obtain consistent 
and accurate images for analysis (Tan et al., 2014). For instance, 
Kurniawati et al. (2009a) applied Otsu, variable, and global 

 
Figure 1. The main components of computer vision system (Tan et al., 2014) 
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thresholding methods for diagnosing blast, brown spot, and 
narrow brown spot diseases.  The results indicated that the Otsu 
method did not perform well with only 44 % of segmentation 
accuracy rate. Besides, during the segmentation process, the 
determination of threshold value is important to obtain both 
accurate segmentation and high percentage of classification.  
 On the other hand, colour-based segmentation segments 
colours in an image. An example of the colour-based 
segmentation method is the K-means clustering. K-means 
clustering is also a classification method that separates data into 
k-mutually exclusive clusters and returns the index of the 
cluster to which it has assigned to each observation (Tan et al., 
2014). K-means clustering operates on actual observations and 
creates a single level of clusters. Phadikar et al. (2013) applied 
the K-means clustering method to separate accurately between 
non-infected and infected regions of the images before using the 
rough set theory (RST) to minimize loss of information and rule 
base classifier to distinguish brown spot, blast, sheath rot, and 
bacterial blight diseases. The finding revealed more than 90 % 
averages of accuracies were obtained among the classifiers. 
 Asfarian et al. (2013) identified the four major rice diseases, 
which are rice leaf blast, brown spot, bacterial leaf blight, and 
tungro disease by using fractal descriptors based on Fourier 
spectrum to analyse the texture of the diseased lesions. The 
classification results showed that the overall accuracies had 
been 91.80 %, 92.31 %, 96.25 %, 83.00 %, and 97.96 % for 
brown spots, bacterial leaf blight, leaf blast, and tungro disease, 
respectively. Phadikar et al. (2013) classified rice leaf brown 
spot, rice blast, and sheath rot, whereas bacterial blight diseases 
by using feature selection and rule generation techniques 
(Figure 2). The rule base classifier was built to classify the 
diseases by using the extracted features from the infected region 
of images and the results revealed more than 90 % of chances 
with different average accuracies among other classifiers. Otsu 
method was used for automatic segmentation of rice 
planthopper by adding the gray-level information based on the 
segmented images (Hongwei et al., 2016). Chung et al. (2016) 

studied the application of computer vision to classify between 
healthy and infected rice seedlings with Bakanae disease. The 
SVM classifier was used to distinguish between the healthy and 
infected rice seedlings with an accuracy rate of 88 %. 
 Ghyar and Birajdar (2017) investigated disease detection in 
rice infected by pests using computer vision system. Support 
vector machine (SVM) and artificial neural network (ANN) 
classifiers obtained classification accuracies of 93 % and 88 %, 
respectively. In previous work, Tanmayee (2017) developed a 
rice crop monitoring system via computer vision to eliminate 
the spread of disease infection. It was indicated that the system 
was able to reduce the pesticide wastage in the rice field by 
tracking the periodic images based on the crop area. Abu Bakar 
et al. (2018) investigated the early detection of rice leaf blast 
using image processing approach in order to distinguish 
between three severity levels (infection, spreading, and worst). 
Similarly, Suman & Dhruvakumar (2015) used SVM classifier for 
the classification of brown spot, rice blast, and bacterial leaf 
blight in rice using histogram plot from the segmented images 
using computer vision system. The summary of rice diseases 
detection by using image processing techniques is shown in 
Table 1. 
 
3.2. Multispectral imaging 
 
 Multispectral imaging is another technique that combines 
the spectroscopic approach and conventional imaging from the 
selected samples in order to obtain information in terms of 
spectral and spatial datasets. Multispectral imaging requires no 
sample preparation, rapid, non-destructive, and suitable for 
assessing food safety and quality evaluation of agricultural 
products (Liu et al., 2015; Lu, 2004; Shrestha & Hardeberg, 
2014). Besides, this technology is able to determine multiple 
components simultaneously for measuring quality assurance. 
Zhang et al. (2018) used a quadrotor unmanned aerial vehicle 
(UAV) combined with the multispectral camera to obtain

 

 
Figure 2. Infected rice leaves (a) rice blast, (b) brown spot and (c) sheath rot (Phadikar et al., 2013) 

 
Table 1. Studies for rice diseases detection by using computer vision system 

Equipment   Types of paddy diseases Results and accuracies References  
Automatic computer vision-based 
system 

Bacterial leaf blight, rice 
sheath blight, rice blast 

SVM-92.5 % Ghyar and Birajdar 
(2017) 

Web camera USB 2.0 with image 
sensor 

Bacterial blight Reduces the need for pesticides to the 
entire farm 

Tanmayee (2017) 

Flatbed colour scanners Bakanae disease SVM-87.9 % Chung et al. (2016) 
Photo-axis feature of yellow and 
green with fluorescent mercury 
lamps 

Rice planthoppers Iteration time compared to traditional 
method is reduced by half (312 ms) 

Hongwei et al. (2016) 

Multi-level colour image camera Rice leaf blast Able to detect the disease based in 
uncontrol environment 

Abu Bakar et al. 
(2018) 

Nikon COOLPIX P4 digital camera, 
Canon Power Shot G2 digital 
camera 

Bacterial leaf blight, brown 
spot, narrow  
brown spot, rice blast 

SVM-70 % Suman and 
Dhruvakumar (2015) 

Camera digital  Rice blast, brown spot, 
bacterial leaf blight, tungro 

PNN- 91.80 % Asfarian et al. (2013) 

Camera digital  Brown spot, rice blast, 
sheath rot, bacterial blight 

Rule generation algorithm- 90 %  Phadikar et al. (2013) 

SVM, support vector machines; PNN, propagation neural network. 
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imaginary data to detect rice sheath blight disease. The 
multispectral images were analysed by using colour space 
transformation that can measure the infected disease in the 
field. The findings indicated that the different disease levels can 
be classified based on the multispectral images with a 
classification accuracy of 63 %. The utilisation of UAV coupled 
with multispectral imaging proved that it can be applied in a 
bigger scale plot in the detection of rice sheath blight disease. 
 Kobayashi et al. (2007) reported the potential of the 
airborne multispectral scanner in the detection of panicle blast 
in rice. The rice reflectance was selected at the wavebands of 
485 and 675 nm in the visible region. In this study, the indicator 
of the panicle blast was determined via the rice reflectance 
ratios. At the yellow-ripe stage, the detection of panicle blast was 
effective in the near-infrared reflectance. Meanwhile, the 
wavebands of 530-570 nm and 650-700 nm were selected as the 
best region for panicle blast detection at the dough stage. In 
another research, Qin and Zhang (2005) discussed the 
application of multispectral remote sensing in the detection of 
rice sheath blight in the field. Based on the imaginary data, the 
identification accuracy increased when the infection obtained 
disease index higher than 35. It was concluded that the 
multispectral images with greater waveband resolution were 
chosen to discriminate between the healthy and infected plants. 
On the other hand, Liu et al. (2014) applied multispectral 
imaging to determine transgenic rice seeds from the non-
transgenic seeds in order to compare classification performance 
using chemometric analysis. The results indicated that the least 
squares-support vector machines (LS-SVM) could classify 
between the transgenic and non-transgenic rice seeds with a 
classification accuracy of up to 100 %. Hence, the multispectral 
imaging coupled with chemometric analysis delivers a 
promising approach to provide classification performance with 
high efficiency for future research.  
 
3.3. Hyperspectral Imaging 
 
 Hyperspectral imaging (HSI) is an extension of 
multispectral imaging, which can acquire both spectral and 
spatial information from samples. It is a combination of 
spectroscopy and image processing (El Masry et al., 2011). HSI 
provides a large dataset called data cube that can provide a 
complete and reliable analysis of external characteristics and 
intrinsic properties of samples (Adebayo et al., 2016). Besides, 
HSI provides an abundance of spectral information where 
necessary features can be extracted for further analysis by using 
image processing procedure, but precaution should be taken to 
avoid loss of important information in the original hyperspectral 
data. The hyperspectral images of samples can produce 
reflectance, absorbance or both spectra, which can be used for 
chemometric analyses. In addition, NIR radiation that 
penetrates well into samples can generate diffuse reflectance 
spectra. Moreover, when there is no reflection in the absorbed 
radiation of samples, absorbance spectra are produced. Thus, 
sample characterization and concentration determination can 
be generated from absorbance spectra. 
 Basically, hyperspectral data are called hypercube which 
arranged as a three-dimensional (3-D) cube of two spatial 
dimensions and one spectral dimension (Aleixos et al., 2002). 
Each hyperspectral image cube consists of 50-300 images that 
are acquired at different wavelengths, with 1-10nm of spectral 
resolution from a specific wavelength region (e.g. 750-2500nm). 
In addition, hyperspectral data can be transformed into 
radiometric quantities, such as transmittance, absorbance, and 
reflectance, which then can be related to the chemical 
composition or the physical characteristics of samples. The 
actual configuration of the HSI system depends on the kind of 
approach used. Overall, the basic parts of the HSI system consist 
of a charge-coupled device (CCD) camera, a detector, a frame 

grabber, a filter, an illumination system (halogen lights), and a 
computer. The detection of a limited number of photons 
entering the detector requires a highly sensitive CCD camera 
with a high signal-to-noise ratio, while to require hyperspectral 
images effectively, the power illumination system is needed. In 
addition, large capacity hard disk and memory are required for 
processing hyperspectral information with a high-speed 
computer. 
 Both visible and NIR HSI have been widely used for 
monitoring the quality of food and agricultural products. They 
have been used in the detection of infected plants to classify 
agricultural materials by determining moisture content, total 
soluble solids content, and acidity in strawberries (El Masry et 
al., 2007) to classify maize kernel hardness (Williams et 
al.,2009), to detect early bruises in apples (Baranowski et al., 
2012), to earlier detect infected wheat (Bauriegel & Herppich, 
2014), to discriminate maturity level and colour evolution in 
apples under different storage conditions (Garrido-Novell et al., 
2012), to detect decay in citrus fruit (Lorente et al., 2013) and to 
detect citrus cancer  (Qin et al., 2009). This system uses 
advanced procedures for image processing and analysis like 
other techniques, which include PCA, partial least squares (PLS), 
neural networks, linear discriminant analysis, and SVM. 
 Yang et al. (2012) used the NIR (900 to 1700nm) HSI system 
for early detection of rice blast disease at the seedling stage in 
the Nipponbare rice variety. The HSI, which is known as 
hypercube, was collected in the diffused reflectance mode that 
consisted of two types of hypercubes, i.e. healthy and infected 
rice seedlings. PCA was used for data reduction, while stepwise 
discriminant analysis was employed to select variables with a 
significant contribution for the desired classification, and linear 
discriminant analysis (LDA) classifier models were carried out 
based on the selected variables. Furthermore, five significant 
wavelengths (1188, 1339, 1377, 1432, and 1614nm) were 
selected, whereas PCA, LDA, and stepwise discriminant analysis 
scores of the images were recalculated by using the five selected 
wavelengths. The PCA score measurement from the selected 
wavelengths and full-spectrum had been used to develop and 
compare classification models. Based on the LDA classifier, 
features extracted from full spectrum (950 to 1650nm) images 
displayed an overall accuracy of 92 % in the validation set, while 
features extracted from five wavebands exhibited an overall 
accuracy of 80 % in the validation set. From this study, a few 
specific wavebands showed the potential for detection of rice 
blast and may be possible to build a low-cost imaging system to 
identify the rice blast disease based on canopy information 
imagery. 
 Meanwhile, prediction and grading of rice panicle blast level 
based on the concept of the “bag of textons” (BoSW) model for 
HSI data representation were carried by Huang et al. (2015). 
This study employed the BoSW model to analyse the 3D HSI of 
rice panicles from more than 50 cultivars collected in two 
different seasons from the same field under the natural 
condition to enable blast disease grading. A hyperspectral 
imaging system was used to acquire 312 rice panicles images 
that had been naturally infected with six different blast infection 
levels; 0, 1, 3, 5, 7, and 9, which were collected in two batches at 
the yellow-ripe stage. This study proposed the concept of a 
spectrum prototype and the statistical distribution of the 
spectrum prototype was used to grade the rice blast severity 
level with 186 samples for training and 126 for testing for the 
combination of the two batches. The results showed that the 
proposed method graded rice panicle blast with a classification 
accuracy of 81.41 % for six-class grading, while 96.40 % for two-
class grading in the validation datasets. All the baseline methods 
using SVM to construct the classifying model and the results 
showed that BoSW method offered the best performance.  
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3.4. Spectroscopy-based techniques 
 
 Spectroscopy is a study of the interaction between radiation 
and matter as a function of wavelength. The spectroscopic 
technique that is used to assess the concentration or the amount 
of a sample is known as spectrometry, while a spectrometer or 
a spectrograph is the instrument that performs the 
measurement (Lorente et al., 2015). Similar to computer vision, 
spectroscopy, which includes ultraviolet (UV), visible (VIS), and 
near-infrared (NIR) range, offers many advantages, such as 
rapidity and simplicity in data collection, can be easily 
automated since spectroscopy is a system that requires minimal 
sample processing and preparation before analysis, involves 
probe to acquire spectra data that do not touch the sample, and 
ability to get different samples properties information in a single 
measurement that is related to their chemical and textural 
properties since spectroscopy covers from UV to NIR range. In 
addition, spectroscopy also has high reproducibility and good 
long-term stability (Abu-Khalaf, 2015). UV spectroscopy is used 
to identify the relative purity of a solution, which is quantifying 
protein, determining DNA concentration, and determining the 
ratio of protein to DNA concentration in a solution. 
Correspondingly, infrared (IR) spectroscopy can quantify 
different types of interatomic bond vibrations at different 
frequencies, such as analysing constituents like pigments and 
fillers, whereas near-infrared (NIR) spectroscopy is vital for 
practical applications since it has greater penetration depth into 
the sample. 
 The spectroscopy may consist of the spectroscopy with 
VIS/NIR wavelength. It is equipped with a fibre optic probe to 
acquire spectra data. Fibre optic probe delivers the light to the 
sample through fibres and collects it from the sample (Lorente 
et al., 2015). The spectroscopy system also consists of light 
source for spectra acquisition, a holder for locating the sample 
over the probe, and a computer equipped with commercial 
software for controlling the spectrometer and acquiring the 
spectra. The experimental set-up of the spectroscopy system is 
presented in Figure 3. This instrument measures the material 
absorption of the infrared radiation or transmittance. Certain 
wavelengths are absorbed, while the others are not as each 
substance has its own characteristic absorption spectrum. The 
instrument also can be applied to make a quantitative analysis 
of substances since the total amount of substances is 
proportional to the absorption of spectra. In addition, the 
general data systems of spectroscopy consist of a general 
computer connected to a printer that can produce high-quality 
spectra, as well as a software programme that includes 
spectrum acquisition offer, spectral transform, spectral 
processing, spectral analysis, and all other functions. Besides, 
users can also create their own operational procedures of 
spectral data for their needs (Tan et al., 2012).  
 Apart from that, principal component analysis (PCA) was 
initially performed in order to explore the data for any 
clustering (Finzi et al., 2015). PCA is a non-supervised linear 
multivariate technique for generating a new set of non-
correlated variables. It uses a mathematical procedure to 
transform a set of correlated response variables into principal 
components (PCs) (Abu-Khalaf, 2015). The PCs then represent 
a pattern of observation in plots. Therefore, the purpose of PCA 
is to show a linear relationship between different samples and 
variables, as well as the possibility of classifying the treatments 
during the experiment. The processed data were analysed by 
using partial least squares (PLS) to divide the spectra into 
subgroups and to study the correlation between the dependent 
and the independent variables in both calibration and cross-
validation tests. PLS is one of the regression algorithms 
employed in the chemometrics fields and built a linear 
relationship between independent and dependent variables.  

 
Figure 3. The experimental set-up for spectroscopy system: (1) 
Spectrophotometer platform, (2) Light source, (3) Reflectance 
probe, (4) Sample holder, (5) Computer with acquisition 
software (Lorente et al., 2015) 
 
PLS estimates dependent variables as projections of the original 
input variables of independent and uses them to construct the 
regression vector in relation to independent and dependent 
variables. The results are evaluated by the performances of the 
coefficient of determination (R2), the Root Mean Square in 
Cross-Validation (RMSECV), the ratio of performance to 
deviation (RPD), the slope of the regression line, the average 
accuracy of prediction that should be as close to 1 as possible, 
and the offset that should be as close to 0 as possible. The other 
recommended classifiers for classification are linear 
discriminant analysis (LDA), Naïve-Bayes (NB) classifier, 
quadratic discriminant analysis (QDA), and bagged decision tree 
(BDT) (Haff et al., 2014). 
 The spectroscopy technique has been widely used for many 
applications in agricultural product, especially for quality and 
properties evaluation, as well as disease or insect damage. These 
applications include the effect of measurement technique and 
sample preparation on estimation of total solids (TS), total 
kjeldahl nitrogen (TNK), total ammoniacal nitrogen (TAN), and 
volatile fatty acids (VFAs) in dairy and pig slurry, as well as in 
digestate by using Near-infrared spectroscopy (NIRS), as 
suggested by Finzi et al. (2015). The results indicated that 
filtered and homogenised samples displayed higher correlation 
(R2) and the ratio of standard error of performance to standard 
deviation (RPD) had been 0.79 < R2 > 0.98 and 2.26 < RPD > 6.99 
for filtered samples, while 0.30 < R2 > 0.97 and 1.24 < RPD > 6.31 
for homogenised samples. Sankaran et al. (2012) performed an 
evaluation on classification between laurel wilt and freeze 
damage (leaf necrosis) from symptomatic and asymptomatic 
avocado leaves by using the VIS-NIR spectroscopy. The results 
revealed that the VIS-NIR spectroscopy could classify 
asymptomatic leaves from infected plants with 94 % accuracies 
via QDA, BDT, linear discriminant analysis, and Naïve-Bayes 
classifiers. On top of that, the detection of olive fruit infested by 
Bactrocera oleae by using NIR spectroscopy was carried out by 
Haff et al. (2014). The results showed that the detection of 
hidden insect damage exhibited classification error rates as low 
as 0.00 % false negative, 12.50 % false negative, and 6.25 % total 
error. Furthermore, there is a wide application of NIR 
spectroscopy on detection of insect damage because insects and 
larvae can be detected indirectly through their internal 
browning or darkening, fungi contamination or dehydration, or 
directly due to their hemolymph, chitin or lipid content. 
 The infrared spectroscopy is a flexible experiment 
technique and comparatively convenient to obtain spectra from 
samples. A spectrometer that has been predominantly used 
nowadays is the Fourier-transform infrared spectrometer 
(FTIR). FTIR spectroscopy yields an interferogram as the result 
of the distraction of radiation between two beams. Change of 



Bachik N. A. et al. / Journal of Agricultural and Food Engineering 1 (2020) 0001 

 

 
e-ISSN: 2716-6236                                                                                                                     © 2020 The Authors. Published by SixScientia Resources 6 

path length between two beams and two domains of frequency 
produces a signal. The distance is interconvertible through the 
mathematical method of Fourier-transformation.  The basic 
components of FTIR spectrometer consist of a source, 
interferometer, sample, detector, amplifier, analogue-to-digital 
converter, and computer. Radiation produced by the FTIR 
spectrometer emerges from the source. It passes through the 
interferometer and the sample before reaching a detector. Then, 
the signal from the detector is amplified by an amplifier. 
Afterwards, the analogue-to-digital converter converts the data 
into digital form and the digital form is transferred to the 
computer for Fourier-transformation. The strength of FTIR is its 
speed advantage which makes it possible to obtain spectra on a 
millisecond timescale. 
 Tan et al. (2012) employed the NIR spectroscopy for 
detection of cold rice blast in cold land, which consisted of the 
healthy rice plant, three diseased levels of leaves blast, five 
diseased levels of grain blast, and four diseased levels of the 
infected stem. The study adopted the multi-spectral vision 
technology to investigate the identified classification test on the 
rice varieties, which had been resistance to disease. It is the 
combination of spectral analysis and image processing 
technology. The results showed that transmittance of the 
spectrum of different parts of the rice plant, which were stems, 
leaves, and grains, were not in the same position. Leaves and 
grain transmittance spectra had almost similar intensity, while 
stems transmission had been relatively low. In addition, disease 
transmission in different degrees of intensity became less 
evident in the diseased leaves when the wavelength increased 
close to 4000nm. The results revealed that under different 
conditions, different plant parts had their own characteristics in 
NIR spectral bands. Moreover, the regularity of the stems and 
the grains had been better than that of leaves. The differences in 
grains had been obvious in the 7000nm-10000nm wavelengths, 
while 4000-7000nm for stems. These may be due to the slight 
changes that took place in both the stem and the seed during 
growth, whereas the leaves were affected as they had 
insufficient water. 
 
3.5. Remote Sensing 
 
 Identification of earth features through the detection of 
electromagnetic radiation characteristic that is emitted or 
reflected by the earth surface is known as Remote Sensing (RS). 
The radiation that is received from the target in different 
spectral regions is detected by the sensors onboard on various 
platforms. It is an effective measurement method and 
inexpensive (Christensen et al., 2004). The measurement of 
disease incidence for many agricultural crops has been carried 
out by using aerial photography, satellite remote sensing, 
airborne sensor data, ground-based sensor data, and 
hyperspectral remote sensing. Aerial photography is the 
technique of taking images of the ground from an elevated 
position and the images are mounted on aerial vehicles (UAV). 
Aerial photography is low-altitude remote sensing (LARS), 
which can acquire images with higher resolution and lower cost. 
The drawback of the aerial photograph is that it is affected by 
large or numerous patches of exposed soil in a field, which could 
lead to interference with disease interpretation. Besides, 
diseased leaves that were covered by the upper canopy of 
healthy green foliage cannot be detected by using the aerial 
photograph.  
 Satellite remote sensing is a technique of acquisition of 
images for large field area. Rush et al. (2010) carried out a study 
on detecting and quantifying wheat infected by wheat streak 
mosaic virus by using Landsat 5 Thematic Mapper (TM). The 
results showed that Landsat 5 TM had managed to classify 
healthy and diseased wheat with accuracies between 89.47 and 
99.07 %. However, satellite remote sensing can be affected by 

weather conditions, have long revisit time and inappropriate for 
small scale field when it involves low-resolution satellite images. 
Meanwhile, the airborne sensor data is a technique of remote 
sensing that uses platforms and sensors to acquire images of the 
ground. Some of the platforms of airborne are airship, UAV, 
helicopter, and aircraft. The advantage of airborne remote 
sensing over satellite is that the user can define the deployment 
and the operational characteristics of the remote sensing. It also 
can provide higher spatial resolution data, rapid image 
acquisition, adjustable spatial resolutions at different flight 
altitudes, and adjustment of speed image acquisition. In fact, Qin 
and Zhang (2005) conducted a study on detection of rice sheath 
blight by using high spatial resolution ADAR (Airborne Data 
Acquisition and Registration) remote sensing. The results 
showed that airborne remote sensing could be applied for the 
detection of rice sheath blight disease, however, identification of 
infection increased when infection of disease was between 
medium and severe levels. 
 On the other hand, the ground-based sensor data is a kind 
of remote sensing that uses ground-based platforms, such as 
spectroradiometer or portable field spectrometer. For ground 
truth measurements, Zhu et al. (2011) showed that ground-
based remote sensing can be used to identify and estimate rice 
neck severity, as well as rice infested by leaf folder with R2 = 
0.827.  However, the spectral response on the crop depends on 
atmospheric conditions, such as illumination and cloudy 
shadow; biotic, such as leaf area index; and edaphic, such as soil 
type and moisture. Meanwhile, the hyperspectral remote 
sensing is a technique that operates in hundreds of narrow 
wavelength bands by utilizing sensors with potential to improve 
the performance of assessment of crop diseases. Zhou et al. 
(2007) estimated rice brown spot disease by using 
hyperspectral remote sensing. The study proved that it was 
feasible to estimate rice brown spot disease severity with RMSE 
of training and testing of 4.1 % and 2.0 % of PLS regression 
analysis. 
 Basically, the imaging system for RS has a few essential 
components, which are energy source or illumination, sensors, 
surface targets, and atmospheric effects. The energy source (A) 
provides electromagnetic energy to the target region. It is 
natural as it originates from the sun or the earth by emission.  
The energy interacts with the atmosphere (B) it passes through 
while travelling from the source to the target. The interaction 
depends on the properties of both the target and the radiation. 
The radiation may be transmitted, absorbed, emitted, scattered 
or reflected by a target substance. After the energy has been 
reflected or absorbed by the target, a sensor (D) collects and 
records the electromagnetic radiation. Sensors are classified 
based on the energy sources used, which may be passive or 
active sensors. Sensors that sense natural radiations, which are 
reflected or emitted from the earth, are known as passive 
sensors; while sensors that produce their own electromagnetic 
radiation are known as active sensors. Most RS sensors are 
passive as they measure the solar radiation reflected from the 
target region. Since RS is classified as optical and microwave, 
sensors that detect solar radiation in the visible, near-infrared, 
middle-infrared, and thermal-infrared wavelength regions are 
known as optical RS. Meanwhile, sensors that work in the region 
of electromagnetic waves with frequencies between 109 and 
1012 Hz are microwave RS.  Sensors for observations need to be 
mounted on a platform that can be classified as ground-based, 
such as handheld radiometers, airborne such as AVIRIS sensor 
of NASA, and spaceborne such as satellite-based.   
 The application of RS in monitoring pest and disease on rice 
is summarized in Table 2.  To date, many studies have detected 
rice diseases, such as rice brown spot, bacterial leaf blight, 
sheath blight, rice panicle blast, rice neck blast, and rice false 
smut. Airborne multispectral scanning has been widely applied 
to examine the spectral response of canopies of the diseased 
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plant for surveillance of environmental stresses, pests and plant 
diseases, as well as ground-based radiometry (Kanda et al., 
2007). The feasibility of discriminating diseases of crop fields 
from the healthy crop has been carried out by using 
multispectral remote sensing data that are available from space-
based and airborne sensors (Singh et al., 2012). Space-based 
sensors usually provide reflectance that consists of a few 
selected wavelength regions called bands at around the 
bandwidth of 60-80nm. The advantages of using the satellite RS 
are that it is potential for fast survey, low in cost, higher 
accuracy, use of multispectral data for increased information, 
inaccessible area coverage, capability at all weathers, day or 
night, as well as the capability of performing simultaneous 
observations from a single platform at different resolutions or 
angles. Presently, the hyperspectral RS has been used for the 
detection of plant disease. It utilizes sensors and operates in 
hundreds of narrow wavelength bands of 10nm or less. Narrow 
bands are better than a few selected wavelengths as they can 
measure the exact characteristic of absorption peaks of plant 
pigments, which lead to more accurate information concerning 
plant health. 
 Hyperspectral remote sensing provides additional bands in 
the visible, NIR, and shortwave-infrared (SWIR) regions 
(Prasannakumar et al., 2013). Its sensors acquire radiance 
information from the visible region to the SWIR region (400-
2500 nm) in less than 10 nm.  The application of hyperspectral 
remote sensing enables the collection of several hundreds of 
spectral bands in a single acquisition, which leads to the 
production of more detailed spectral data than broadband 
technique, with the potential to improve the assessment of crop 
disease. Zhu et al. (2011) estimated the rice neck blasts severity 
by using spectral reflectance and constructed artificial neural 

network model (BP model) for the rice neck blast modelling. The 
severity of diseases among the infected plants was then 
measured based on the percentage of infection of the fringes. 
Besides, diseases index (DI) was used to classify the infected 
fringes into six grades (0, 1, 2, 3, 4, and 5). The results showed 
that in the visible (400-745nm) and the NIR (805-1000nm) 
spectral regions, DI=3 with moderate neck blast showcased high 
raw reflectance, while the visible (750-800nm) spectral region 
displayed low raw reflectance.  In addition, DI=5, which referred 
to rice fringes with serious neck blast, portrayed high 
reflectance at NIR (960-1000nm) spectral regions, while at 
wavelength 400 to 960nm, low raw reflectance was noted 
(Figure 4). The differences of spectral reading showed some 
changes in the cellular structure and the content of the pigment 
on the infected rice neck. In the visible (520-550nm) spectral 
regions, serious neck blast had low FDR, while at a wavelength 
of 710-750 nm spectral region; moderate neck blast had low 
FDR. Next, BP-neutral network was constructed and provided 
better accuracy in the retrieval of DI compared to a regression 
model with RMSE, R2 and CRR of 0.084, 0.992, and 100 %. 
 Characterization of brown planthopper (BPH) damage on 
rice plants through hyperspectral remote sensing under field 
conditions had been carried out by Prasannakumar et al. (2014). 
The study discovered that in the VIS region (400-700nm), 
spectral reflectance of uninfected plants was lower than infested 
crops, while reflectance of the infested plant increased with the 
increase in damage. Figure 5 shows peaks that were revealed 
when values of correlation coefficients were plotted against 
wavelength, whereby four sensitive wavebands were identified; 
764nm (r=0.674), 961nm (r=0.70), 1201nm (r=0.70), and 
1664nm (r=0.60). Then, three new BPH indices were formulated 

 
Table 2. Studies pertaining to rice diseases detection by using remote sensing application 

Types of systems   Types of paddy 
diseases 

Wavelength 
range 

Significant wavelength References 

Spectrophotometer Rice false smut, rice 
glume blight 

350-2500nm 680, 750, 695, 694, 735nm  Liu et al. (2010) 

Spectroradiometer  Bacterial leaf blight 330-2600nm 757-1039nm Yang (2010) 
Spectroradiometer Rice neck blast 400-1000 nm 685, 711 nm Zhu et al. (2011) 
Spectroradiometer Rice leaf blight  325-1075 nm 770-860 nm, 920-1050 nm Singh et al. (2012) 
ASD FieldSpec 
Spectrometer 

Brown spot  350-2500 nm 401-530, 550-730 nm Zhao et al. (2012) 

Spectroradiometer Rice infested by BPH 350-2500 nm 500, 665, 1792, 1986 nm Prasannakumar et al. 
(2013)  

Spectroradiometer Rice infested by BPH 350-2500 nm 764, 961, 1201, 1664 nm Prasannakumar and 
Chander (2013) 

Spectroradiometer Rice infested by BPH 325-107 nm -  Huang et al. (2015) 
SPOT-5 images BPH 530-2500 nm 530–600 nm, 610–680 nm, 780–

1000 nm, 1000-2500 nm 
Ghobadifar et al. (2014) 

hyperspectral and LISS IV 
satellite 

Bacterial leaf blight 350-2500 nm 760, 990, 680 and 540 nm Das et al. (2015) 

Airborne hyperspectral 
imagery 

Rice blast 430-1000 nm 498-515 nm, 700-717 nm Kobayashi et al. (2016) 

Multispectral remote 
sensing 

BPH 530-2500 nm 530–600 nm, 610–680 nm, 780–
1000 nm, 1000-2500 nm 

Ghobadifar et al. (2016) 

PlanetScope rice dwarf, rice blast, 
glume blight 

450-1000 nm 455–515 nm, 500–590 nm, 590–
670 nm, 780–860 nm 

Shi et al. (2018) 

Landsat-8 images Rice sheath blight - - Zhang et al. (2018) 
Hyperspectral remote 
sensing 

Rice blast 360-1025 nm  450-800 nm Tian et al. (2018) 

Spectrophotometer  Rice foliar disease 
and insect damage 

350–2 500 nm 400–720 nm, 720–1200 nm, 
1200–2400 nm 

Liu et al. (2018) 

BPH, brown plant hopper; LISS, linear imaging self-scanner. 
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Figure 4. Reflectance spectra: (a) and first derivative reflectance, (b) of DI=5 (serious), DI=3 (moderate) and DI=0 (healthy)  
(Zhu et al., 2011) 

 

 

Figure 5.  Infested rice crop reflectance of different BPH damage levels at 1nm interval against values of correlation coefficients 
(Prasannakumar et al., 2014) 

 
by using two or more sensitive wavebands, which had been 
brown planthopper index-1 (BPHI-1), brown planthopper 
index-2 (BPHI-2), and brown planthopper index-3 (BPHI-3), 
that showed a good relationship with BPH infestation levels. 
Furthermore, the BPH damage reflectance model, which is a 
multilinear regression model, was developed between damage 
levels and plant reflectance with R2 = 0.71 and RMSE=1.74, while 
validation with R2 = 0.73 and RMSE=0.71 accounted for 73 % of 
the variability in the BPH damage. 
 
4. Conclusions 
 
 This paper presents a review on the optical imaging 
techniques, which are non-destructive techniques that have 
been used for rice disease detection. The imaging-based 
techniques include computer vision, spectroscopic, HSI, and 
remote sensing. The HSI and remote sensing approaches have 
been more preferred as they operate in narrow wavelength 

bands, which are better than from a few selected wavelengths, 
as narrow wavelength can measure the exact characteristic of 
the absorption peaks of plant pigment. Moreover, the 
measurement of this exact characteristic can lead to more 
accurate information concerning plant health, as well as 
diseases. However, HSI has some drawbacks pertaining to the 
volume of data, noises from the sensor, calibration errors, and 
shot errors that limit the interpretation, as well as the analysis 
of the images. Meanwhile, applications of remote sensing are 
good for large scale farm, but the ADAR fails in differentiating 
between very low infection and healthy plants. The application 
of remote sensing at the canopy level depends on several factors, 
such as atmospheric like cloud shadow and illumination; 
edaphic like soil type and moisture; as well as biotic like crop 
variety, leaf area index, plant architecture, wind, and field 
management. The review portrays that these techniques of rice 
disease detection possess the ability to rapidly and accurately 
detect rice diseases. Therefore, some improvements should be 
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made to overcome the limitations of each technique. The image 
processing and imaging-based techniques could be integrated 
with the agricultural vehicle for on-site rice disease detection for 
the purposes of disease control, prevention, and management. 
Nevertheless, in the computer vision technique, a few things 
must be noted to obtain a high rate of accuracy, for instance, 
selection of features to be extracted, image pre-processing steps 
to get noise-free image, selection of camera to get good quality 
image for better segmentation, and determination of threshold 
value to avoid error during the classification phase. Recent 
works provide the notion that optical imaging techniques can be 
used for rice diseases detection. The changes from the 
conventional approach to the modern techniques indicated that 
the commercialized industries for rice crop need a robust 
method for monitoring the rice diseases at an early stage. One of 
the major challenges in the implementation of optical imaging 
techniques for rice disease detection is the configuration of the 
device in a suitable condition. Hence, it is possible to integrate 
the optical imaging into a robust model so that these approaches 
are developed for industrial purposes. The advantages of these 
techniques demonstrated the detection of rice diseases apart 
from improving rice growth and minimizing the problems of the 
disease. With the advancement of optical imaging technologies, 
the requirement for rice yield needed will be achieved along 
with further research and progression.  
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